skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gupta, Ragini"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lu, Xin; Wang, Wei; Wu, Dehao; Li, Xiaoxia (Ed.)
    In the rapidly evolving landscape of scientific semiconductor laboratories (commonly known as, cleanrooms), integrated with Internet of Things (IoT) technology and Cyber-Physical Systems (CPSs), several factors including operational changes, sensor aging, software updates and the introduction of new processes or equipment can lead to dynamic and non-stationary data distributions in evolving data streams. This phenomenon, known as concept drift, poses a substantial challenge for traditional data-driven digital twin static machine learning (ML) models for anomaly detection and classification. Subsequently, the drift in normal and anomalous data distributions over time causes the model performance to decay, resulting in high false alarm rates and missed anomalies. To address this issue, we present TWIN-ADAPT, a continuous learning model within a digital twin framework designed to dynamically update and optimize its anomaly classification algorithm in response to changing data conditions. This model is evaluated against state-of-the-art concept drift adaptation models and tested under simulated drift scenarios using diverse noise distributions to mimic real-world distribution shift in anomalies. TWIN-ADAPT is applied to three critical CPS datasets of Smart Manufacturing Labs (also known as “Cleanrooms”): Fumehood, Lithography Unit and Vacuum Pump. The evaluation results demonstrate that TWIN-ADAPT’s continual learning model for optimized and adaptive anomaly classification achieves a high accuracy and F1 score of 96.97% and 0.97, respectively, on the Fumehood CPS dataset, showing an average performance improvement of 0.57% over the offline model. For the Lithography and Vacuum Pump datasets, TWIN-ADAPT achieves an average accuracy of 69.26% and 71.92%, respectively, with performance improvements of 75.60% and 10.42% over the offline model. These significant improvements highlight the efficacy of TWIN-ADAPT’s adaptive capabilities. Additionally, TWIN-ADAPT shows a very competitive performance when compared with other benchmark drift adaptation algorithms. This performance demonstrates TWIN-ADAPT’s robustness across different modalities and datasets, confirming its suitability for any IoT-driven CPS framework managing diverse data distributions in real time streams. Its adaptability and effectiveness make it a versatile tool for dynamic industrial settings. 
    more » « less
  2. Sensory IoT (Internet of Things) networks are widely applied and studied in recent years and have demonstrated their unique benefits in various areas. In this paper, we bring the sensor network to an application scenario that has rarely been studied - the academic cleanrooms. We design SENSELET++, a low-cost IoT sensing platform that can collect, manage and analyze a large amount of sensory data from heterogeneous sensors. Furthermore, we design a novel hybrid anomaly detection framework which can detect both time-critical and complex non-critical anomalies. We validate SENSELET++ through the deployment of the sensing platform in a lithography cleanroom. Our results show the scalability, flexibility, and reliability properties of the system design. Also, using real-world sensory data collected by SENSELET++, our system can analyze data streams in real-time and detect shape and trend anomalies with a 91% true positive rate. 
    more » « less